All posts by CH

Watch the Honeycomb Clock Gently Track Time

We love clocks here at Hackaday, and so does [John Whittington]. Last year he created this hexagonal honey clock (or “Honock”) by combining some RGB LEDs with a laser-cut frame to create a smooth time display that uses color and placement to display time with a simple and attractive system.

The outer ring of twelve hexagons is essentially the hour hand, similar to analog clock faces: twelve is up, three is directly to the right, six is straight down, and nine is to the left. The inner ring represents ten minutes per hex. Each time the inner ring fills, the next hex (hour) on the outer ring lights up. The whole display is flooded with a minute-long rainbow at noon and midnight. Watch it in action in the video, embedded below.

[John] also posted an imgur gallery for the Honock, with some good shots of the assembly. Unusual clocks are great ways to show off creativity within broad and simple functional constraints; take for example this robotic clock thats draws out the time on demand.

from Blog – Hackaday https://ift.tt/2xeRkzJ
via IFTTT

Their Battery is Full of Air

Storing electrical energy is a huge problem. A lot of gear we use every day use some form of battery and despite a few false starts at fuel cells, that isn’t likely to change any time soon. However, batteries or other forms of storage are important in many alternate energy schemes. Solar cells don’t produce when it is dark. Windmills only produce when the wind blows. So you need a way to store excess energy to use for the periods when you aren’t creating electricity. [Kris De Decker] has an interesting proposal: store energy using compressed air.

Compressed air storage is not a new idea. On a large scale, there have been examples of air compressed in underground caverns and then released to run a turbine at a future date. However, the efficiency of this is poor — around 40 to 50 percent — mainly because the air heats up during compression and often needs to be prewarmed (using energy from another source) prior to decompression to prevent freezing. By comparison, batteries can be 70 to 90 percent efficient, although they have their own problems, too.

The idea explored in this paper is not to try to store a power plant’s worth of energy in a giant underground cavern, but rather use smaller compressed air setups like you would use batteries to store power at the point of consumption. The technology is called micro-CAES (an acronym for compressed air energy storage).

Although the article compares them to batteries, they seem more akin to fuel cells, to us, even though the technology is quite different, of course. Batteries usually have a fairly limited lifespan and often produce just a few times the amount of energy required to manufacture them. CAES and fuel cells typically have very long lifespans, so they produce a lot more energy over that lifespan than was used in their construction. There’s nothing very exotic or toxic either. An air storage tank, a compressor and a generator is all you need.

Keep in mind “micro” here is in context of giant underground storage caverns. The article estimates that a system for a typical residence would cost about $10,000. More than batteries, but with a lower total cost over time because batteries wear out. No one is suggesting your laptop or cell phone will run on compressed air.

This sounds great, but there are two major problems. First, the amount of air you have to store to be practical is an issue. The other problem is the system efficiency is low. Worse, these parameters are interrelated. So storing at a higher air pressure to get more air in a particular volume will also reduce efficiency.

The main extra proposal to help make micro-CAES practical is to take advantage of the heat produced on compression to heat water and living space. On decompression, the heat absorbed can be used for air conditioning and refrigeration. This reduces the electric demand for those tasks, making the overall system more efficient. In other words, if you could reduce electric usage by half because of the cooling and heating properties of the micro-CAES, that will offset the low efficiency of the unit.

The other way to possibly make micro-CAES practical is by using low pressure so that there isn’t much heat produced or consumed. You can read all the pros and cons of this approach in the original post.

This is an area of active research around the world. It struck us that this would be an area where a citizen scientist could make a real impact. There’s nothing super exotic about it. Air compressors and tanks are easy to obtain. Generating with a turbine is easily accomplished, too. We have a feeling a little hacker ingenuity could go a long way in making real advances in this area. Your tough choice? Do you publish in a journal or do you submit your work to the Hackaday tip line? We vote for the tip line.

from Blog – Hackaday https://ift.tt/2ksOs9m
via IFTTT

Why do we itch?


via It’s Okay To Be Smart


via Adafruit

Hackaday Belgrade is On: Join LiveStream and Chat!

Good morning Hackaday universe! Hackaday Belgrade 2018 has just started, and we’re knee-deep in sharing, explaining, and generally celebrating our craft. But just because you’re not here doesn’t mean that you shouldn’t take part.

Come join us!

from Blog – Hackaday https://ift.tt/2xl9pfI
via IFTTT

Bitcoin explainer created using AI #Bitcoin #AI


This hilarious, completely un-educational, video was made using the predictive typing site Botnik.

Via Mashable:

Look, understanding cryptocurrency can be confusing. We here at Mashable are dedicated to helping our readers understand the complexities of this new form of currency and how it affects our day-to-day lives.

But even we are having our collective minds blown by this video, an “explainer” of cryptocurrency created by Botnik Studios that was “written using predictive keyboards trained on dozens of Bitcoin explainers.”

And the results are as insane as you might expect:

“To understand how bitcoin transactions are created, randomly pick a number between 1 and 30,000. Now spend that amount of money on Ethereum.”

Here is a piece I published on Elephants:

Botnik Studios

Read more and have some fun!


via Adafruit

Wireless Charger Gives a Glimpse into Industrial Design Process

Almost every product on the market has been through the hands of an industrial designer at some point in its development. From the phone in your pocket to the car in your driveway or the vacuum in your closet, the way things look and work is the result of a careful design process. Taking a look inside that process, like with this wireless phone charger concept, is fascinating and can yield really valuable design insights.

We’ve featured lots of [Eric Strebel]’s work before, mainly for the great fabrication tips and tricks he offers, like how to get a fine painted finish or the many uses of Bondo. But this time around, he walks us through a condensed version of his design process for a wireless phone charger and stand. His client had specific requirements, like being able to have the phone held up in landscape or portrait mode, so he started with pen and paper and sketched some ideas. A swiveling cylinder seemed to fit the bill, and after a quick mockup in PVC pipe, he started work on a full-size prototype in urethane foam. There are some great fabrication tips in the video below, mainly centered on dealing with not owning a lathe.

The thing for us with all of [Eric]’s videos, but especially this one, is seeing the design process laid out, from beginning to (almost) the end. He sure makes industrial design look like a cool gig, one that would appeal to the Jacks- and Jills-of-all-trades who hang out around here.

from Blog – Hackaday https://ift.tt/2seetfT
via IFTTT

Edwin Land Instant Photo Legacy #celebratephotography


From The Conversation:

It probably happens every minute of the day: A little girl demands to see the photo her parent has just taken of her. Today, thanks to smartphones and other digital cameras, we can see snapshots immediately, whether we want to or not. But in 1944 when 3-year-old Jennifer Land asked to see the family vacation photo that her dad had just taken, the technology didn’t exist. So her dad, Edwin Land, invented it.

Three years later, after plenty of scientific development, Land and his Polaroid Corporation realized the miracle of nearly instant imaging. The film exposure and processing hardware are contained within the camera; there’s no muss or fuss for the photographer who just points and shoots and then watches the image materialize on the photo once it spools out of the camera.

Land is probably best known for the “instant photo” – or the spiritual progenitor of today’s ubiquitous selfie. His Polaroid camera was first released commercially in 1948 at retail locations and prices aimed at the postwar middle class. But this is just one of a host of technological breakthroughs Land invented and commercialized, most of which centered around light and how it interacts with materials. The technology used to show a 3D movie and the goggles we wear in the theater were made possible by Land and his colleagues. The camera aboard the U-2 spy plane, as featured in the movie “Bridge of Spies,” was a Land product, as were even some aspects of the plane’s mechanics. He also worked on theoretical problems, drawing on a deep understanding of both chemistry and physics.


Photofooter

We #celebratephotography here at Adafruit every Saturday. From photographers of all levels to projects you have made or those that inspire you to make, we’re on it! Got a tip? Well, send it in!

If you’re interested in making your own project and need some gear, we’ve got you covered. Be sure to check out our Raspberry Pi accessories and our DIY cameras.


via Adafruit