Wearable Baby Monitors May Miss Key Vital Signs


via Wareable

Wearable baby monitors are meant to give parents peace of mind. However, that peace of mind relies on trusting the device to actually deliver accurate information.

These wearable baby monitors may be missing key vital signs, according to a new study by Children’s Hospital of Philadelphia published in the Journal of the American Medical Association.

Read more.


via Adafruit

You Have To Have A Very High IQ To Understand This Rick And Morty Portal Gun Replica

It’s barely September, but that still means you’ve got to start working on your Halloween costume. If last year is any indication, the most popular costume this year will be, by far, Rick from Rick and Morty. There’s a lot to be said about this, but let me simplify it: if you dress up as Rick from Rick and Morty, you are not a Rick. You’re a Morty.

Nevertheless, Halloween is an awesome opportunity for some cosplay and prop-making action, and [Daren] has this year all wrapped up. He’s building the portal gun from Rick and Morty, with a projector. Yes, it will display portals where ever you point it. It’s actually building something instead of buying a blue wig and a lab coat. Rick would be proud.

The key to this portal build replica is the same tech as found in those Christmas projectors that illuminate the sides of houses with tidings of good cheer. These are just tiny little gobos in a rotating frame, illuminated with high-brightness LEDs. That’s easy enough to fit inside a 3D printed portal gun case, and when you add some 18650 LiPOs, a speaker for sound, and a PC fan for cooling, you have the makings of a real, projecting portal gun.

While it’s just a work in progress now, it is a fantastic achievement so far. Halloween is coming up, and this is a great build for all those Mortys out there.

from Blog – Hackaday https://ift.tt/2N7R0cN
via IFTTT

Scratch-Built 3D-Printer Goes Back to the Roots of the Hobby

It’s so easy and so cheap to order things like CNC routers and 3D-printers off the shelf that we can be forgiven for forgetting what was once involved in owning machines such as these. It used to be that you had no choice but to build your machine from the ground up. While that’s less true today, it’s still the case if you want to push the limits of what’s commercially available, and this huge scratch-built 3D-printer is a good example of that.

It’s not exactly a fresh build – [Thomas Workshop] posted this last year – but it escaped our notice at the time, and we think the three-part video series below that details the build deserves a look over. When we say scratch built, we mean it. This machine started off as a bundle of aluminum and steel stock. No 80/20 extrusions, no off-the-shelf linear rails – just metal and a plan. The build was helped considerably by a small CNC router, which also had that DIY look, but most of the parts were cut and finished with simple hand tools. The resulting gantry allows an enormous work volume 40 cm in each dimension, with a heated bed that uses four heat mats. We were impressed that [Thomas] got the build just far enough to print parts that were used to finish the build – that’s the hacker spirit.

It’s perhaps not the biggest 3D-printer we’ve seen – that distinction might go to this enormous 8-cubic foot machine – and it certainly can’t print a house. But it’s an impressive build that probably cost a whole lot less than a commercial machine of similar capacity, and it’s got that scratch-built cred.

Thanks to [Baldpower] for the tip.

from Blog – Hackaday https://ift.tt/2owlnvB
via IFTTT

Branch out your SQLite Database with LiteTree

Whether you want some quick and dirty data storage, or simply don’t have that heavy requirements for your local database system, SQLite is always a good choice. With its portable single-file approach, bindings to all major languages, and availability on systems of all sizes, it is relatively easy to integrate a SQLite database in your undertakings. And if you tend to develop directly in your production environment, you may be interested to hear that the folks at [aergo] made this a lot more flexible (and interesting) by adding Git-style branching to the SQLite engine.

Similar to Git, each database operation is now stored as a commit with a unique id as reference point, and new branches will keep track how they diverge from their parent reference point. This essentially lets you modify your data set or database schema on the fly, while keeping your original data not only untouched, but fully isolated and functional. Unfortunately, merging branches is not yet supported, but it is planned for the near future.

In case you don’t see much use for git-alike functionality in a database, how about the other way around then: using Git as a database, among other tricks?

from Blog – Hackaday https://ift.tt/2LRIo5z
via IFTTT

Epoxy Embedded Electronic Art Running On Pyramid Power

We sometimes get our inspirations from art. When [kodera2t] saw some Japanese art of fish drawings embedded in clear epoxy he just had to make his own. But while skilled in electronics, he wasn’t skilled at drawing. We’d still call him an artist, though, after seeing what he came up with in his electronics embedded in crystal clear epoxy.

Controlling epoxy-empedded leds through BluetoothHis first works of electronic art were a couple of transistors and some ICs, including an 80386, encased in epoxy. But then he realized that he wanted the electronics to do something interesting. However, once encased in epoxy, how do you keep the electronics powered forever?

He tried a solar cell charging a battery which then powered an LED but he didn’t like the idea of chemical batteries encased in epoxy for a long time.

He then switched to wireless power transmission with a receiving coil in the base of epoxy pyramids. For one of them, the coil powers a BLE board with an attached LED which he can control from his phone. And his latest contains an ESP32-PICO with an OLED display. The code allows him to upload new firmware over the air but on his Hackaday.io page, he shows the difference between code which can brick the ESP32 versus code which won’t. But don’t take our word for it. Check out the video below to see his artistry for yourself.

While embedding electronics in epoxy is new to [kodera2t], we’ve seen it a few times before. once in the form of an amplifier circuit done beautifully, dead bug style, and a more experimental attempt with a solar lantern.

from Blog – Hackaday https://ift.tt/2wzxxZ0
via IFTTT

Giant Button Build


This project was sent in by Zach. Find out if you are a winner with a great build and write up! Via Build Cool Stuff:

The conversation went something like:

If you wanted to build an interactive art object what would it be like?

It would grab peoples attention from far away.
It would make people smile.
It would make people feel good about themselves.
It should take people on an emotion journey. In other words, make them feel good and then take that away.

Hmmm… What is something kind of universal that almost everyone likes to do? PUSH BUTTONS!

IMG 8307 576x1024

Learn more!


via Adafruit

Researchers Use Biomimicry and 3D Printing to Develop Robotic Fish


3DP robotic fish prototype

Via 3DPrint

3D printed robotic fish have all sorts of applications, from underwater data acquisition and detecting toxins in the water to studying and saving real fish, or just adding a new pet to the family. A group of engineering researchers from the University of Firat in Turkey are using biomimetic design to come up with flexible solutions for different marine applications, like observing organisms, examining underwater resources, finding and combating pollution, coastline security, surveying submerged areas, and fault detection in pipelines.

Detailed mechanical configuration of the 3D printed robotic fish.
The researchers, inspired by the carp fish for their 3D printed robotic fish, recently published a paper, titled “Mechatronic Design and Manufacturing of the Intelligent Robotic Fish for Bio-Inspired Swimming Modes,” about their use of 3D printing, robotics, and biomimicry to develop an Autonomous Underwater Vehicle (AUV).

The abstract reads, “This paper presents mechatronic design and manufacturing of a biomimetic Carangiform-type autonomous robotic fish prototype (i-RoF) with two-link propulsive tail mechanism. For the design procedure, a multi-link biomimetic approach, which uses the physical characteristics of a real carp fish as its size and structure, is adapted. Appropriate body rate is determined according to swimming modes and tail oscillations of the carp. The prototype is composed of three main parts: an anterior rigid body, two-link propulsive tail mechanism, and flexible caudal fin. Prototype parts are produced with 3D-printing technology. In order to mimic fish-like robust swimming gaits, a biomimetic locomotion control structure based on Central Pattern Generator (CPG) is proposed. The designed unidirectional chained CPG network is inspired by the neural spinal cord of Lamprey, and it generates stable rhythmic oscillatory patterns. Also, a Center of Gravity (CoG) control mechanism is designed and located in the anterior rigid body to ensure three-dimensional swimming ability. With the help of this design, the characteristics of the robotic fish are performed with forward, turning, up-down and autonomous swimming motions in the experimental pool. Maximum forward speed of the robotic fish can reach 0.8516 BLs-1 and excellent three-dimensional swimming performance is obtained.”

Two of the most important things to consider when designing a 3D printable, biomimetic robotic fish are its body structure and swimming modes, so the researchers spent a lot of time observing and examining fish to get the design right. According to the paper, over 85% of fish swim by bending their bodies and/or caudal fins, also known as BCF, while the rest swim with their median and/or pectoral fins (MPF).

Cangiform carp fish swimming patterns

See more!


via Adafruit